/*************************************************************************** * TargetGroup.cc -- The "TargetGroup" class holds a group of IP * * addresses, such as those from a '/16' or '10.*.*.*' specification. It * * also has a trivial HostGroupState class which handles a bunch of * * expressions that go into TargetGroup classes. * * * ***********************IMPORTANT NMAP LICENSE TERMS************************ * * * The Nmap Security Scanner is (C) 1996-2012 Insecure.Com LLC. Nmap is * * also a registered trademark of Insecure.Com LLC. This program is free * * software; you may redistribute and/or modify it under the terms of the * * GNU General Public License as published by the Free Software * * Foundation; Version 2 with the clarifications and exceptions described * * below. This guarantees your right to use, modify, and redistribute * * this software under certain conditions. If you wish to embed Nmap * * technology into proprietary software, we sell alternative licenses * * (contact sales@insecure.com). Dozens of software vendors already * * license Nmap technology such as host discovery, port scanning, OS * * detection, version detection, and the Nmap Scripting Engine. * * * * Note that the GPL places important restrictions on "derived works", yet * * it does not provide a detailed definition of that term. To avoid * * misunderstandings, we interpret that term as broadly as copyright law * * allows. For example, we consider an application to constitute a * * "derivative work" for the purpose of this license if it does any of the * * following: * * o Integrates source code from Nmap * * o Reads or includes Nmap copyrighted data files, such as * * nmap-os-db or nmap-service-probes. * * o Executes Nmap and parses the results (as opposed to typical shell or * * execution-menu apps, which simply display raw Nmap output and so are * * not derivative works.) * * o Integrates/includes/aggregates Nmap into a proprietary executable * * installer, such as those produced by InstallShield. * * o Links to a library or executes a program that does any of the above * * * * The term "Nmap" should be taken to also include any portions or derived * * works of Nmap, as well as other software we distribute under this * * license such as Zenmap, Ncat, and Nping. This list is not exclusive, * * but is meant to clarify our interpretation of derived works with some * * common examples. Our interpretation applies only to Nmap--we don't * * speak for other people's GPL works. * * * * If you have any questions about the GPL licensing restrictions on using * * Nmap in non-GPL works, we would be happy to help. As mentioned above, * * we also offer alternative license to integrate Nmap into proprietary * * applications and appliances. These contracts have been sold to dozens * * of software vendors, and generally include a perpetual license as well * * as providing for priority support and updates. They also fund the * * continued development of Nmap. Please email sales@insecure.com for * * further information. * * * * As a special exception to the GPL terms, Insecure.Com LLC grants * * permission to link the code of this program with any version of the * * OpenSSL library which is distributed under a license identical to that * * listed in the included docs/licenses/OpenSSL.txt file, and distribute * * linked combinations including the two. You must obey the GNU GPL in all * * respects for all of the code used other than OpenSSL. If you modify * * this file, you may extend this exception to your version of the file, * * but you are not obligated to do so. * * * * If you received these files with a written license agreement or * * contract stating terms other than the terms above, then that * * alternative license agreement takes precedence over these comments. * * * * Source is provided to this software because we believe users have a * * right to know exactly what a program is going to do before they run it. * * This also allows you to audit the software for security holes (none * * have been found so far). * * * * Source code also allows you to port Nmap to new platforms, fix bugs, * * and add new features. You are highly encouraged to send your changes * * to the dev@nmap.org mailing list for possible incorporation into the * * main distribution. By sending these changes to Fyodor or one of the * * Insecure.Org development mailing lists, or checking them into the Nmap * * source code repository, it is understood (unless you specify otherwise) * * that you are offering the Nmap Project (Insecure.Com LLC) the * * unlimited, non-exclusive right to reuse, modify, and relicense the * * code. Nmap will always be available Open Source, but this is important * * because the inability to relicense code has caused devastating problems * * for other Free Software projects (such as KDE and NASM). We also * * occasionally relicense the code to third parties as discussed above. * * If you wish to specify special license conditions of your * * contributions, just say so when you send them. * * * * This program is distributed in the hope that it will be useful, but * * WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Nmap * * license file for more details (it's in a COPYING file included with * * Nmap, and also available from https://svn.nmap.org/nmap/COPYING * * * ***************************************************************************/ /* $Id$ */ #include "tcpip.h" #include "TargetGroup.h" #include "NmapOps.h" #include "nmap_error.h" #include "global_structures.h" #include "libnetutil/netutil.h" #include #define BITVECTOR_BITS (sizeof(bitvector_t) * CHAR_BIT) #define BIT_SET(v, n) ((v)[(n) / BITVECTOR_BITS] |= 1UL << ((n) % BITVECTOR_BITS)) #define BIT_IS_SET(v, n) (((v)[(n) / BITVECTOR_BITS] & 1UL << ((n) % BITVECTOR_BITS)) != 0) extern NmapOps o; NewTargets *NewTargets::new_targets; /* Return a newly allocated string containing the part of expr up to the last '/' (or a copy of the whole string if there is no slash). *bits will contain the number after the slash, or -1 if there was no slash. In case of error return NULL; *bits is then undefined. */ static char *split_netmask(const char *expr, int *bits) { const char *slash; slash = strrchr(expr, '/'); if (slash != NULL) { long l; char *tail; l = parse_long(slash + 1, &tail); if (tail == slash + 1 || *tail != '\0' || l < 0 || l > INT_MAX) return NULL; *bits = (int) l; } else { slash = expr + strlen(expr); *bits = -1; } return mkstr(expr, slash); } /* Parse an IPv4 address with optional ranges and wildcards into bit vectors. Each octet must match the regular expression '(\*|#?(-#?)?(,#?(-#?)?)*)', where '#' stands for an integer between 0 and 255. Return 0 on success, -1 on error. */ static int parse_ipv4_ranges(octet_bitvector octets[4], const char *spec) { const char *p; int octet_index, i; p = spec; octet_index = 0; while (*p != '\0' && octet_index < 4) { if (*p == '*') { for (i = 0; i < 256; i++) BIT_SET(octets[octet_index], i); p++; } else { for (;;) { long start, end; char *tail; errno = 0; start = parse_long(p, &tail); /* Is this a range open on the left? */ if (tail == p) { if (*p == '-') start = 0; else return -1; } if (errno != 0 || start < 0 || start > 255) return -1; p = tail; /* Look for a range. */ if (*p == '-') { p++; errno = 0; end = parse_long(p, &tail); /* Is this range open on the right? */ if (tail == p) end = 255; if (errno != 0 || end < 0 || end > 255 || end < start) return -1; p = tail; } else { end = start; } /* Fill in the range in the bit vector. */ for (i = start; i <= end; i++) BIT_SET(octets[octet_index], i); if (*p != ',') break; p++; } } octet_index++; if (octet_index < 4) { if (*p != '.') return -1; p++; } } if (*p != '\0' || octet_index < 4) return -1; return 0; } static NetBlock *parse_expr_without_netmask(const char *hostexp, int af) { struct sockaddr_storage ss; size_t sslen; if (af == AF_INET) { NetBlockIPv4Ranges *netblock_ranges; /* Check if this is an IPv4 address, with optional ranges and wildcards. */ netblock_ranges = new NetBlockIPv4Ranges(); if (parse_ipv4_ranges(netblock_ranges->octets, hostexp) == 0) return netblock_ranges; delete netblock_ranges; } sslen = sizeof(ss); if (resolve_numeric(hostexp, 0, &ss, &sslen, AF_INET6) == 0) { NetBlockIPv6Netmask *netblock_ipv6; netblock_ipv6 = new NetBlockIPv6Netmask(); netblock_ipv6->set_addr((struct sockaddr_in6 *) &ss); return netblock_ipv6; } return new NetBlockHostname(hostexp, af); } /* Parses an expression such as 192.168.0.0/16, 10.1.0-5.1-254, or fe80::202:e3ff:fe14:1102/112 and returns a newly allocated NetBlock. The af parameter is AF_INET or AF_INET6. Returns NULL in case of error. */ NetBlock *NetBlock::parse_expr(const char *target_expr, int af) { NetBlock *netblock; char *hostexp; int bits; hostexp = split_netmask(target_expr, &bits); if (hostexp == NULL) { error("Unable to split netmask from target expression: \"%s\"", target_expr); goto bail; } if (af == AF_INET && bits > 32) { error("Illegal netmask in \"%s\". Assuming /32 (one host)", target_expr); bits = -1; } netblock = parse_expr_without_netmask(hostexp, af); if (netblock == NULL) goto bail; netblock->apply_netmask(bits); free(hostexp); return netblock; bail: free(hostexp); return NULL; } bool NetBlock::is_resolved_address(const struct sockaddr_storage *ss) const { if (this->resolvedaddrs.empty()) return false; return sockaddr_storage_equal(&*this->resolvedaddrs.begin(), ss); } bool NetBlockIPv4Ranges::next(struct sockaddr_storage *ss) { struct sockaddr_in *sin; unsigned int i; /* This first time this is called, the current values of this->counter probably do not point to set bits (they point to 0.0.0.0). Find the first set bit in each bitvector. If any overflow occurs, it means that there is not bit set for one of the octets and therefore there are not addresses overall. */ for (i = 0; i < 4; i++) { while (this->counter[i] < 256 && !BIT_IS_SET(this->octets[i], this->counter[i])) this->counter[i]++; if (this->counter[i] >= 256) return false; } /* Assign the returned address based on current counters. */ sin = (struct sockaddr_in *) ss; sin->sin_family = AF_INET; sin->sin_port = 0; #if HAVE_SOCKADDR_SA_LEN sin->sin_len = sizeof(*ss); #endif sin->sin_addr.s_addr = htonl((this->counter[0] << 24) | (this->counter[1] << 16) | (this->counter[2] << 8) | this->counter[3]); for (i = 0; i < 4; i++) { bool carry; carry = false; do { this->counter[3 - i] = (this->counter[3 - i] + 1) % 256; if (this->counter[3 - i] == 0) carry = true; } while (!BIT_IS_SET(this->octets[3 - i], this->counter[3 - i])); if (!carry) break; } if (i >= 4) { /* We cycled all counters. Mark them invalid for the next call. */ this->counter[0] = 256; this->counter[1] = 256; this->counter[2] = 256; this->counter[3] = 256; } return true; } /* Expand a single-octet bit vector to include any additional addresses that result when mask is applied. */ static void apply_ipv4_netmask_octet(octet_bitvector bits, uint8_t mask) { unsigned int i, j; uint32_t chunk_size; /* Process the bit vector in chunks, first of size 1, then of size 2, up to size 128. Check the next bit of the mask. If it is 1, do nothing. Otherwise, pair up the chunks (first with the second, third with the fourth, etc.). For each pair of chunks, set a bit in one chunk if it is set in the other. chunk_size also serves as an index into the mask. */ for (chunk_size = 1; chunk_size < 256; chunk_size <<= 1) { if ((mask & chunk_size) != 0) continue; for (i = 0; i < 256; i += chunk_size * 2) { for (j = 0; j < chunk_size; j++) { if (BIT_IS_SET(bits, i + j)) BIT_SET(bits, i + j + chunk_size); else if (BIT_IS_SET(bits, i + j + chunk_size)) BIT_SET(bits, i + j); } } } } /* Expand IPv4 bit vectors to include any additional addresses that result when the given netmask is applied. The mask is in host byte order. */ static void apply_ipv4_netmask(octet_bitvector octets[4], uint32_t mask) { /* Apply the mask one octet at a time. It's done this way because ranges span exactly one octet. */ apply_ipv4_netmask_octet(octets[0], (mask & 0xFF000000) >> 24); apply_ipv4_netmask_octet(octets[1], (mask & 0x00FF0000) >> 16); apply_ipv4_netmask_octet(octets[2], (mask & 0x0000FF00) >> 8); apply_ipv4_netmask_octet(octets[3], (mask & 0x000000FF)); } /* Expand IPv4 bit vectors to include any additional addresses that result from the application of a CIDR-style netmask with the given number of bits. If bits is negative it is taken to be 32. */ void NetBlockIPv4Ranges::apply_netmask(int bits) { uint32_t mask; if (bits > 32) return; if (bits < 0) bits = 32; if (bits == 0) mask = 0x00000000; else mask = 0xFFFFFFFF << (32 - bits); apply_ipv4_netmask(this->octets, mask); } static std::string bitvector_to_range_string(const octet_bitvector v) { unsigned int i, j; std::ostringstream result; i = 0; while (i < 256) { while (i < 256 && !BIT_IS_SET(v, i)) i++; if (i >= 256) break; j = i + 1; while (j < 256 && BIT_IS_SET(v, j)) j++; if (result.tellp() > 0) result << ","; if (i == j - 1) result << i; else if (i + 1 == j - 1) result << i << "," << (j - 1); else result << i << "-" << (j - 1); i = j; } return result.str(); } std::string NetBlockIPv4Ranges::str() const { std::ostringstream result; result << bitvector_to_range_string(this->octets[0]); result << "."; result << bitvector_to_range_string(this->octets[1]); result << "."; result << bitvector_to_range_string(this->octets[2]); result << "."; result << bitvector_to_range_string(this->octets[3]); return result.str(); } void NetBlockIPv6Netmask::set_addr(const struct sockaddr_in6 *addr) { this->exhausted = false; this->start = addr->sin6_addr; this->cur = addr->sin6_addr; this->end = addr->sin6_addr; } /* Get the sin6_scope_id member of a sockaddr_in6, based on a device name. This is used to assign scope to all addresses that otherwise lack a scope id when the -e option is used. */ static int get_scope_id(const char *devname) { struct interface_info *ii; if (devname == NULL || devname[0] == '\0') return 0; ii = getInterfaceByName(devname, AF_INET6); if (ii != NULL) return ii->ifindex; else return 0; } static bool ipv6_equal(const struct in6_addr *a, const struct in6_addr *b) { return memcmp(a->s6_addr, b->s6_addr, 16) == 0; } bool NetBlockIPv6Netmask::next(struct sockaddr_storage *ss) { struct sockaddr_in6 *sin6; if (this->exhausted) return false; sin6 = (struct sockaddr_in6 *) ss; memset(sin6, 0, sizeof(*sin6)); sin6->sin6_family = AF_INET6; #ifdef SIN_LEN sin6->sin6_len = sizeof(*sin6); #endif if (this->addr.sin6_scope_id != 0) sin6->sin6_scope_id = this->addr.sin6_scope_id; else sin6->sin6_scope_id = get_scope_id(o.device); sin6->sin6_addr = this->cur; if (ipv6_equal(&this->cur, &this->end)) exhausted = true; /* Increment current address. */ for (int i = 15; i >= 0; i--) { this->cur.s6_addr[i]++; if (this->cur.s6_addr[i] > 0) break; } return true; } /* Fill in an in6_addr with a CIDR-style netmask with the given number of bits. */ static void make_ipv6_netmask(struct in6_addr *mask, int bits) { unsigned int i; memset(mask, 0, sizeof(*mask)); if (bits < 0) bits = 0; else if (bits > 128) bits = 128; if (bits == 0) return; i = 0; /* 0 < bits <= 128, so this loop goes at most 15 times. */ for ( ; bits > 8; bits -= 8) mask->s6_addr[i++] = 0xFF; mask->s6_addr[i] = 0xFF << (8 - bits); } /* a = (a & mask) | (b & ~mask) */ static void ipv6_or_mask(struct in6_addr *a, const struct in6_addr *mask, const struct in6_addr *b) { unsigned int i; for (i = 0; i < sizeof(a->s6_addr) / sizeof(*a->s6_addr); i++) a->s6_addr[i] = (a->s6_addr[i] & mask->s6_addr[i]) | (b->s6_addr[i] & ~mask->s6_addr[i]); } void NetBlockIPv6Netmask::apply_netmask(int bits) { const struct in6_addr zeros = { { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} } }; const struct in6_addr ones = { { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} } }; struct in6_addr mask; if (bits > 128) return; if (bits < 0) bits = 128; this->exhausted = false; make_ipv6_netmask(&mask, bits); ipv6_or_mask(&this->start, &mask, &zeros); ipv6_or_mask(&this->end, &mask, &ones); this->cur = this->start; } /* a = a & ~b */ static void recover_ipv6_netmask(struct in6_addr *a, const struct in6_addr *b) { unsigned int i; for (i = 0; i < sizeof(a->s6_addr) / sizeof(*a->s6_addr); i++) a->s6_addr[i] = a->s6_addr[i] & ~b->s6_addr[i]; } static unsigned int count_ipv6_bits(const struct in6_addr *a) { unsigned int i, n; unsigned char mask; n = 0; for (i = 0; i < sizeof(a->s6_addr) / sizeof(*a->s6_addr); i++) { for (mask = 0x80; mask != 0; mask >>= 1) { if ((a->s6_addr[i] & mask) != 0) n++; } } return n; } std::string NetBlockIPv6Netmask::str() const { std::ostringstream result; unsigned int bits; struct in6_addr a; a = this->start; recover_ipv6_netmask(&a, &this->end); bits = count_ipv6_bits(&a); result << inet_ntop_ez((struct sockaddr_storage *) &this->addr, sizeof(this->addr)) << "/" << bits; return result.str(); } NetBlock *NetBlockHostname::resolve() const { struct addrinfo *addrs, *addr; std::list resolvedaddrs; NetBlock *netblock; struct sockaddr_storage ss; size_t sslen; addrs = resolve_all(this->hostname.c_str(), this->af); for (addr = addrs; addr != NULL; addr = addr->ai_next) { if (addr->ai_addrlen < sizeof(ss)) { memcpy(&ss, addr->ai_addr, addr->ai_addrlen); resolvedaddrs.push_back(ss); } } if (addrs != NULL) freeaddrinfo(addrs); if (resolvedaddrs.empty()) return NULL; ss = *resolvedaddrs.begin(); sslen = sizeof(ss); if (resolvedaddrs.size() > 1 && o.verbose > 1) { error("Warning: Hostname %s resolves to %lu IPs. Using %s.", this->hostname.c_str(), (unsigned long) resolvedaddrs.size(), inet_ntop_ez(&ss, sslen)); } netblock = NULL; if (ss.ss_family == AF_INET) { NetBlockIPv4Ranges *netblock_ranges; uint32_t ip; ip = ntohl(((struct sockaddr_in *) &ss)->sin_addr.s_addr); netblock_ranges = new NetBlockIPv4Ranges(); BIT_SET(netblock_ranges->octets[0], (ip & 0xFF000000) >> 24); BIT_SET(netblock_ranges->octets[1], (ip & 0x00FF0000) >> 16); BIT_SET(netblock_ranges->octets[2], (ip & 0x0000FF00) >> 8); BIT_SET(netblock_ranges->octets[3], (ip & 0x000000FF)); netblock = netblock_ranges; } else if (ss.ss_family == AF_INET6) { NetBlockIPv6Netmask *netblock_ipv6; netblock_ipv6 = new NetBlockIPv6Netmask(); netblock_ipv6->set_addr((struct sockaddr_in6 *) &ss); netblock = netblock_ipv6; } if (netblock == NULL) return NULL; netblock->hostname = this->hostname; netblock->resolvedaddrs = resolvedaddrs; netblock->apply_netmask(this->bits); return netblock; } NetBlockHostname::NetBlockHostname(const char *hostname, int af) { this->hostname = hostname; this->af = af; this->bits = -1; } bool NetBlockHostname::next(struct sockaddr_storage *ss) { assert(false); return false; } void NetBlockHostname::apply_netmask(int bits) { this->bits = bits; } std::string NetBlockHostname::str() const { std::ostringstream result; result << this->hostname; if (this->bits >= 0) result << "/" << this->bits; return result.str(); } /* debug level for the adding target is: 3 */ NewTargets *NewTargets::get (void) { if (new_targets) return new_targets; new_targets = new NewTargets(); return new_targets; } NewTargets::NewTargets (void) { Initialize(); } void NewTargets::Initialize (void) { history.clear(); while (!queue.empty()) queue.pop(); } /* This private method is used to push new targets to the * queue. It returns the number of targets in the queue. */ unsigned long NewTargets::push (const char *target) { std::pair::iterator, bool> pair_iter; std::string tg(target); if (tg.length() > 0) { /* save targets in the scanned history here (NSE side). */ pair_iter = history.insert(tg); /* A new target */ if (pair_iter.second == true) { /* push target onto the queue for future scans */ queue.push(tg); if (o.debugging > 2) log_write(LOG_PLAIN, "New Targets: target %s pushed onto the queue.\n", tg.c_str()); } else { if (o.debugging > 2) log_write(LOG_PLAIN, "New Targets: target %s is already in the queue.\n", tg.c_str()); /* Return 1 when the target is already in the history cache, * this will prevent returning 0 when the target queue is * empty since no target was added. */ return 1; } } return queue.size(); } /* Reads a target from the queue and return it to be pushed * onto Nmap scan queue */ std::string NewTargets::read (void) { std::string str; /* check to see it there are targets in the queue */ if (!new_targets->queue.empty()) { str = new_targets->queue.front(); new_targets->queue.pop(); } return str; } void NewTargets::clear (void) { new_targets->history.clear(); } unsigned long NewTargets::get_number (void) { return new_targets->history.size(); } unsigned long NewTargets::get_scanned (void) { return new_targets->history.size() - new_targets->queue.size(); } unsigned long NewTargets::get_queued (void) { return new_targets->queue.size(); } /* This is the function that is used by nse_nmaplib.cc to add * new targets. * Returns the number of targets in the queue on success, or 0 on * failures or when the queue is empty. */ unsigned long NewTargets::insert (const char *target) { if (*target) { if (new_targets == NULL) { error("ERROR: to add targets run with -sC or --script options."); return 0; } if (o.current_scantype == SCRIPT_POST_SCAN) { error("ERROR: adding targets is disabled in the Post-scanning phase."); return 0; } if (strlen(target) >= 1024) { error("ERROR: new target is too long (>= 1024), failed to add it."); return 0; } } return new_targets->push(target); }