
Introduction Scope This document specifies the required trust delegation and
key management routines for TUF clients. Relationship to Other Documents
Much of the behavior specified in this document is partially laid out in the
core TUF document. The system’s behavior with regard to freeze and replay
attacks is covered in the document entitled ”Software Update Security Frame-
work: Client Library Replay and Freeze Attack Protection”. The repository-
side counterpart to this document contains a large amount of information on the
response that subsystem will demonstrate in many of the same circumstances.

Overview The Update Framework is a Python library designed to allow software
developers to safely, securely, and easily update clients running their software. In
particular, it focuses on the issues of timeliness of data, rapid recovery from a key
compromise, and ensuring the authenticity and integrity of installed updates.
This document describes the behavior the client must demonstrate in order to
provide those properties. Example The examples used throughout both this and
its companion repository-side document are designed to be easy to reproduce,
both to verify TUFs behavior and to emulate it. The following subsections
demonstrate how to set up a small but fully functional TUF system in which to
do so.

Setting up the Repository You’ll need to run the following steps to set the stage:

#! /bin/sh

create the relevant directories

mkdir tufdemo

cd tufdemo

mkdir demorepo

mkdir demoproject

add a file to the project

echo "#! /usr/bin/env python" > demoproject/helloworld.py

echo "print ’hello , world!’" >> demoproject/helloworld.py

run the quickstart script

quickstart.py -t 1 -k keystore -l demorepo -r demoproject

This will prompt you for a password for your keystore and an expiration date.
Choosing your expiration date is something of a balancing act: on the one hand,
you want to make sure that all your clients have had a chance to update before
your keys and metadata expire, but on the other hand you want to choose a
short time so that keys you revoke expire quickly. A range of one to six weeks
is likely to be reasonable for most applications.

After running this and choosing an expiration date, you’ll see that it has created
an encrypted keystore and a repository for you to use, and that the repository’s

1

contents match those of the demo project we created.

Running the Server To actually perform an update out of this, you’ll need to run
a web server through which the client can access the files. Fortunately, Python
comes with an easy-to-use module to do this for you:

cd demorepo

python -m SimpleHTTPServer 8001

Setting up the Client TUF isn’t designed as a replacement for package managers
so it doesn’t provide a mechanism with which to perform the initial installation
of our demo project’s metadata. To do that, open up another terminal and run
the following:

#! /bin/sh

mkdir democlient

cp -r demorepo/meta democlient/cur

cp -r democlient/cur democlient/prev

Once we’ve installed our metadata, getting the software is a simple matter of
running the demonstration client, found with TUF’s source at examples/exam-
ple client.py. Basic Client Behavior When trying to update, the goal of the
client is to efficiently obtain the most up-to-date legitimate version of the pack-
age. Doing that means three things: first, that the client has to be able to get
enough metadata from the repo to determine which files to update, second that
it has to be able to verify that metadata, and third that it needs to be able to
verify the files once it receives them.

To start with, TUF downloads the timestamp.txt file, which tells it the last
time an update was made. To verify it, we pull the last known good public
key for the timestamp role out of our copy of root.txt. Assuming that the repo
has updated since the last time we did, TUF will continue by downloading the
release.txt metadata file and, like timestamp.txt, verifying it against the release
role key stored in our copy of root.txt. When combined with the timestamp
metadata, the release file will allow us to determine if we’re receiving the ap-
propriate version of the other metadata files.

Since we now have enough verified data to ensure that we’re getting the proper
version of the rest of our metadata, we can go ahead and obtain and verify the
root.txt metadata file. As we’ve already seen, this stores metadata about both
other roles and their keys, and as we’ll see later, this is also how we handle key
revocation.

Assuming everything else has checked out, we can now download targets.txt,
which allows us to determine which target files (aka, non-metadata files) we

2

will need to update. Since we have all the hashes of all the target files and
know that those hashes are authentic, up-to-date, and valid, we can fetch the
matching files and complete the update.

If, at any point in the process, we cannot verify a file against its signature
or if it hashes incorrectly, the update process will terminate with an error. This
signature verification process is positive in that the existence of a threshold
of signatures from the appropriate role is both necessary and sufficient for a
signature to be valid.

Key Storage As we’ve seen, the proper operation of a TUF client only depends
on the ability to verify that any results it obtains when polling the server or
mirrors have been signed by all of the necessary keys. Since this only requires
the use of public keys, client key management reduces to the task of properly
associating roles with their keys. In TUF, the mechanism for doing so is via its
metadata files, and especially root.txt.

root.txt This metadata file is responsible for storing all the trusted keys for
TUF, along with the key metadata needed to do routine key management. It
must be located at the base URL of the repository’s metadata files and signed
by the root role’s key.

Format The format of root.txt is as follows:

{ "_type" : "Root",

"ts" : TIME,

"expires" : EXPIRES,

"keys" : {

KEYID : KEY

, ... },

"roles" : {

ROLE : {

"keyids" : [KEYID, ...] ,

"threshold" : THRESHOLD }

, ... }

}

The format of each element in the above should be consistent with that de-
scribed in the TUF specification sections 4.1, 4.2, and 4.3, which is to say that
the TIME and EXPIRES values should be in ”YYYY-MM-DD HH:MM:SS”
format, KEYID is a 64 character hexadecimal string, and THRESHOLD is a
(normally small) integer.

If the current date is past that specified in EXPIRES, the update process should
end with an error. The same is true of all other metadata in TUF.

The KEY value should be of the following format:

3

{ "keytype" : KEYTYPE,

"keyval" : KEYVAL }

where KEYTYPE is a string signifying the encryption primitive (e.g., ’rsa’) and
KEYVAL is a canonical JSON mapping specifying the appropriate key param-
eters for that primitive.

The ROLE value should be one of ’root’, ’release’, ’targets’, ’timestamp’, or
’mirrors’.

Verification and Validation In addition to validation of the format as speci-
fied above, the client library is required to perform the following checks upon
receiving an updated root.txt:

1. Check the ’ts’ field against the current time and date to ensure that they
do not replace this file with an older version. This is to ensure that
an attacker can’t replay metadata from before a compromised key was
revoked.

2. Verify that each of the top level roles is correctly specified in the ”roles”
field, with the exception of the optional ”mirrors” role.

3. Verify that each keyid matches its respective key and is unique.

In addition to the above, the client library must also take care not to trust a
root.txt past its expiration time and to ensure that keys specified in it meet
algorithm-specific standards of safety. Clients must not be allowed trust
or install an improperly signed root.txt. Doing so would allow an attacker
to forge arbitrary updates, effectively removing all of TUF’s security properties.

Trust Delegation Trust delegation (the process of a trusted user allowing an-
other user to share some or all of their privileges) is built into TUF’s trust
model, particularly with respect to the Target role. The goal of this delega-
tion mechanism is to make it possible for individual developers to be trusted
on some portion of a project, but not the project as a whole. Note that since
authorization is positive in TUF, if a valid signature for an update exists under
any role with permission over it that update will be accepted as valid.

targets.txt The targets.txt file, signed by the target role’s key, is responsible
for providing the mechanism for trust delegation. It must be located at the
repository’s metadata base URL and have the following format:

{ "_type" : "Targets",

"ts" : TIME,

"expires" : EXPIRES,

"targets" : TARGETS,

("delegations" : DELEGATIONS)

}

4

The TIME and EXPIRES fields are formatted as for the root.txt format.

The TARGETS value should be a list of elements in the following format:

{ TARGETPATH : {

"length" : LENGTH,

"hashes" : HASHES,

("custom" : { ... }) }

, ...

}

Where LENGTH is an integer and HASHES is a list of the cryptographic hashes
of the path’s destination. The ’custom’ field’s contents are application-specific
and have no impact on the delegation behavior.

The DELEGATIONS part of the targets.txt file points to a list of items for-
matted like so:

{ "keys" : {

KEYID : KEY,

... },

"roles" : {

ROLE : {

"keyids" : [KEYID, ...] ,

"threshold" : THRESHOLD,

"paths" : [PATHPATTERN, ...] }

, ... }

}

With the exception of PATHPATTERN, all the variables seen here are for-
matted identically to the variables of the same names in the previous listings.
PATHPATTERN itself represents either a literal path in UNIX format or a path
with ending with a wildcard represented by ’/**’.

Example We can use the tools built into TUF to see how the above translates
into a full targets.txt. While in the demorepo/meta directory created by our
first script, we can use signercli.py like this:

cd ../..

signercli.py delegate --keystore=keystore ROLE KEYID PATH

to modify our default targets.txt to add a delegated role named ROLE associ-
ated with KEYID that has permission to modify elements in PATH. Here’s the
(scrubbed) output:

{"signatures": [{

5

"keyid": KEYID,

"method": "sha256-pkcs1",

"sig": SIGNATURE

}],

"signed": {

"_type": "Targets",

"expires": EXPIRES,

"targets": {

PATH: {

"hashes": {

"sha256": HASH},

"length": LENGTH}

},

"ts": EXPIRES}

"delegations": {

"keys": {

KEYID: {

"keytype": "rsa",

"keyval": {"e": E, "n": N}

}

},

"roles": {ROLE: {"keyids": [KEYID],

"paths": [PATH],

"threshold": 1}

}

}

}

Delegated Targets Metadata Delegated targets metadata is stored in /targets/-
ROLE.txt, where ROLE is the name of the role to be delegated. This file must be
signed by that role and be formatted identically to the top level targets.txt file.
Hierarchically delegated trust is, appropriately, handled hierarchically- if DELE-
GATED ROLE delegates trust to ANOTHER ROLE, then the metadata file for
ANOTHER ROLE can be found at /targets/DELEGATED ROLE/ANOTHER ROLE.txt.
We can create a simple example with the following command:

signercli.py maketargets \

--keystore =../ keystore \

--parentdir=targets \

--keyid=KEYID \

--rolename=ROLE \

TARGETS

And here’s the result, stored at targets/ROLE.txt:

{

6

"signatures": [

{

"keyid": KEYID,

"method": "sha256-pkcs1",

"sig": SIGNATURE

}

],

"signed": {

"_type": "Targets",

"expires": EXPIRES,

"targets": {

PATH: {

"hashes": {

"sha256": HASH

},

"length": LENGTH

}

},

"ts": TIMESTAMP

}

}

Key Revocation Key revocation in TUF falls into one of three cases:

1. Revocation of a delegated target key

2. Revocation of a non-root top level key

3. Revocation of a root key

Revocation of a delegated target key is simple- the key in question is simply
removed from the metadata files that delegated to it. Similarly, revoking or
replacing a non-root top level key is just a matter of replacing it in root.txt
with the new value. For example, suppose that a role ALICE delegates trust to
another role EVE. ALICE can then revoke EVE’s trust entirely by deleting the
targets/ALICE/EVE.txt file and removing the DELEGATIONS data structure
from either targets/ALICE.txt (if ALICE is a child of a toplevel role) or from
her parent role otherwise. The next time an update is generated, EVE’s trust
will have been completely revoked. Replacing EVE’s key can then be done by
adding her like a new delegation.

Revocation of the root key is only slightly more complex. Merely replacing
it would leave older clients unable to update, so the better way is to simply
sign with both the new key and the old key until you are confident that all the
relevant clients have updated. Once you’ve done that you can stop signing with
the old key.

Future Work In the future, the format for keys may be opened to support

7

OpenSSL-style keys. Support for skewed clocks may also be added as noted in
the core TUF spec, since many clients seem to be operating under substantial
clock drift. Support for automatically integrating TUF with other projects using
distutils is also a potential future direction.

8

